Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine …

Land cover classification in semiarid areas is a difficult task that has been tackled using different strategies, such as the use of normalized indices, texture metrics, and the combination of images from different dates or different sensors. In this paper we present the results of an experiment using three sensors (Sentinel-1 SAR, Sentinel-2 MSI and LiDAR), four dates and different normalized indices and texture metrics to classify a semiarid area. Three machine learning algorithms were used: Random Forest, Support Vector Machines and Multilayer Perceptron; Maximum Likelihood was used as a baseline classifier. The synergetic use of all these sources resulted in a significant increase in accuracy, Random Forest being the model reaching the highest accuracy. However, the large amount of features (126) advises the use of feature selection to reduce this figure. After using Variance Inflation Factor and Random Forest feature importance, the amount of features was reduced to 62. The final overall accuracy obtained was 0.91 ± 0.005 (𝛼 = 0.05) and kappa index 0.898 ± 0.006 (𝛼 = 0.05). Most of the observed confusions are easily explicable and do not represent a significant difference in agronomic terms.

Datos y Recursos

Cite como

Valdivieso-Ros C. Alonso-Sarria F. y Gomariz-Castillo F. Effect of the Synergetic Use of Sentinel-1 Sentinel-2 LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine …. MDPI, 2023. https://doi.org/10.3390/rs15020312

Clipboard Icon
Recuperado: 22 Jan 2025 21:27:53

Metadatos

Información básica
Tipo de recurso Artículo
Fecha de creación 05-11-2024
Fecha de última modificación 22-01-2025
Mostrar histórico de cambios
Identificador de los metadatos 41a72236-3757-56f1-938c-6a7685a97254
Idioma de los metadatos Español
Temáticas (NTI-RISP)
Categoría del conjunto de alto valor (HVD) Observación de la Tierra y medio ambiente
Categoría temática ISO 19115
URI de palabras clave
Información bibliográfica
Nombre del autor Valdivieso-Ros, C., Alonso-Sarria, F. y Gomariz-Castillo F.
Nombre del editor MDPI
Identificador alternativo DOI: 10.3390/rs15020312
Identificador del autor
Email del autor
Web del autor
Procedencia
Declaración de linaje
Perfil de Metadatos
Notas sobre la versión
Versión