Bioaccumulation and fate of pharmaceuticals in a Mediterranean coastal lagoon: Temporal variation and impact of a flash flood event

Coastal ecosystems are particularly vulnerable to terrestrial inputs from human-impacted areas. The prevalence of wastewater treatment plants, unable to remove contaminants such as pharmaceuticals (PhACs), leads to their continuous input into the marine environment. In this paper, the seasonal occurrence of PhACs in a semi-confined coastal lagoon (the Mar Menor, south-eastern Spain) was studied during 2018 and 2019 by evalu-ating their presence in seawater and sediments, and their bioaccumulation in aquatic organisms. Temporal variation in the contamination levels was evaluated by comparison to a previous study carried out between 2010 and 2011 before the cessation of permanent discharges of treated wastewater into the lagoon. The impact of a flash flood event (September 2019) on PhACs pollution was also assessed. A total of seven compounds (out of 69 PhACs analysed) were found in seawater during 2018-2019, with a limited detection frequency (<33%) and concentrations (up to 11 ng/L of clarithromycin). Only carbamazepine was found in sediments (ND-1.2 ng/g dw), suggesting an improved environmental quality in comparison to 2010-2011 (when 24 and 13 compounds were detected in seawater and sediments, respectively). However, the biomonitoring of fish and molluscs showed a still remarkable accumulation of analgesic/anti-inflammatory drugs, lipid regulators, psychiatric drugs and beta-blocking agents, albeit not higher than in 2010. The flash flood event from 2019 increased the prevalence of PhACs in the lagoon, compared to the 2018-2019 sampling campaigns, especially in the upper water layer. After the flash flood the antibiotics clarithromycin and sulfapyridine yielded the highest concentrations ever reported in the lagoon (297 and 145 ng/L, respectively), alongside azithromycin in 2011 (155 ng/L). Flash flood events associated with sewer overflows and soil mobilisation, which are expected to increase under climate change scenarios, should be considered when assessing the risks posed by pharmaceuticals to vulnerable aquatic eco-systems in the coastal areas.

Data and Resources

Cite as

Castano-Ortiza J.M. Gil-Solsonaa R. Ospina-Alvarez N. Garcia-Pimentel M.M. Leon V.M. Santos L.H.M.L.M. Barcelo D. y Rodriguez-Mozaz S. Bioaccumulation and fate of pharmaceuticals in a Mediterranean coastal lagoon: Temporal variation and impact of a flash flood event. Elsevier B.V., 2023. https://doi.org/10.1016/j.envres.2023.115887

Clipboard Icon
Retrieved: 20 Jan 2025 22:48:57

Metadata

Basic information
Resource type Article
Date of creation 2024-11-05
Date of last revision 2025-01-20
Show changelog
Metadata identifier d9e4a59b-bf18-56db-aa42-e107e6b3036a
Metadata language Spanish
Themes (NTI-RISP)
High-value dataset category Earth observation and environment
ISO 19115 topic category
Keyword URIs
Bibliographic information
Name of the dataset creator Castano-Ortiza, J.M., Gil-Solsonaa, R., Ospina-Alvarez, N., Garcia-Pimentel, M.M., Leon, V.M., Santos, L.H.M.L.M., Barcelo, D. y Rodriguez-Mozaz, S.
Name of the dataset editor Elsevier B.V.
Other identifier DOI: 10.1016/j.envres.2023.115887
Identifier of the dataset creator
Email of the dataset creator lhsantos@icra.cat
Website of the dataset creator
Provenance
Lineage statement
Metadata Standard
Version notes
Version