An objective approach to select surrogate species for connectivity conservation.

Connected landscapes can increase the effectiveness of protected areas by facilitating individual movement and gene flow between populations, thereby increasing the persistence of species even in fragmented habitats. Connectivity planning is often based on modeling connectivity for a limited number of species, i.e., “connectivity umbrellas”, which serve as surrogates for co-occurring species. Connectivity umbrellas are usually selected a priori, based on a few life history traits and often without evaluating other species. We developed a quantitative method to identify connectivity umbrellas at multiple scales. We demonstrate the approach on the terrestrial large mammal community (24 species) in continental Europe at two scales: 13 geographic biomes and 36 ecoregions, and evaluate the interaction of landscape characteristics on the selection of connectivity umbrellas. We show that the number, identity, and attributes of connectivity umbrellas are sensitive to spatial scale and human influence on the landscape. Multiple species were selected as connectivity umbrellas in 92% of the geographic biomes (average of 4.15 species) and 83% of the ecoregions (average of 3.16 species). None of the 24 species evaluated is by itself an effective connectivity umbrella across its entire range. We identified significant interactions between species and landscape attributes. Species selected as connectivity umbrellas in regions with low human influence have higher mean body mass, larger home ranges, longer dispersal distances, smaller geographic ranges, occur at lower population densities, and are of higher conservation concern than connectivity umbrellas in more human-influenced regions. More species are required to meet connectivity targets in regions with high human influence (average of three species) in comparison to regions with low human influence (average of 1.67 species). We conclude that multiple species selected in relation to landscape scale and characteristics are essential to meet connectivity goals. Our approach enhances objectivity in selecting which and how many species are required for connectivity conservation and fosters well-informed decisions, that in turn benefit entire communities and ecosystems.

Data and Resources

Metadata

Basic information
Resource type Text
Date of creation 2024-09-17
Date of last revision 2024-09-17
Show changelog
Metadata identifier 75dacd4b-20ff-5e4f-966c-9122e537e65d
Metadata language Spanish
Themes (NTI-RISP)
High-value dataset category
ISO 19115 topic category
Other identifier
Keyword URIs
Character encoding UTF-8
Spatial information
INSPIRE identifier ESPMITECOIEPNBFRAGM754
INSPIRE Themes
Geographic identifier Spain
Coordinate Reference System
Spatial representation Type
Bounding Box
"{\"type\": \"Polygon\", \"coordinates\": [[[-18.16, 27.64], [4.32, 27.64], [4.32, 43.79], [-18.16, 43.79], [-18.16, 27.64]]]}"
Spatial resolution of the dataset (m)
Provenance
Lineage statement
Metadata Standard
Conformity
Source dataset
Update frequency
Sources
  1. Frontiers in Ecology and Evolution. Vol. 11
Purpose
Process steps
Temporal extent (Start)
Temporal extent (End)
Version notes
Version
Dataset validity
Responsible Party
Name of the dataset creator Dutta, T., De Barba, M., Selva, N., Fedorca, A.C., Maiorano, L., Thuiller, W., Zedrosser, A., Signer, J., Pflüger, F., Frank, S., Lucas, P.M. y Balkenhol, N.
Name of the dataset maintainer
Identifier of the dataset creator
Email of the dataset creator
Website of the dataset creator
Identifier of the dataset maintainer
Email of the dataset maintainer
Website of the dataset maintainer