Predicting spatiotemporal patterns of road mortality for medium-large mammals.

We modelled the spatiotemporal patterns of road mortality for seven medium-large mammals, using a roadkill dataset from Mato Grosso do Sul, Brazil (800 km of roads surveyed every two weeks, for two years). We related roadkill presence-absence along the road sections (1000 m) and across the survey dates with a collection of environmental variables, including land cover, forest cover, distance to rivers, temperature, precipitation and vegetation productivity. We further included two variables aiming to reflect the intrinsic spatial and temporal roadkill risk. Environmental variables were obtained through remote sensing and weather stations, allowing the estimate of the roadkill risk for the entire surveyed roads and survey periods. Overall, the models could explain a small fraction of the spatiotemporal patterns of roadkills (<0.23), probably due to species being habitat generalists, but still had reasonable discrimination power (AUC averaging 0.70 ± 0.07). The intrinsic spatial and temporal roadkill risk were the most important variables, followed by land cover, climate and NDVI. We show that identifying spatiotemporal roadkill patterns may provide valuable information to define specific management actions focused on road sections and time periods, in complement to permanent road mitigation measures. Our approach thus offers a new insight into the understanding of road effects and how to plan and strategize monitoring and mitigation.

Datos y Recursos

Cite como

Ascensão F. Yogui D. Alves M. Medici E.P. y Desbiez A. Predicting spatiotemporal patterns of road mortality for medium-large mammals. Elsevier, 2019. https://doi.org/10.1016/j.jenvman.2019.109320

Clipboard Icon
Recuperado: 18 Jan 2025 09:36:52

Metadatos

Información básica
Tipo de recurso Texto
Fecha de creación 02-12-2024
Fecha de última modificación 18-01-2025
Mostrar histórico de cambios
Identificador de los metadatos fcadbff5-6813-5a1b-8eb0-4ce902305c8f
Idioma de los metadatos Español
Temáticas (NTI-RISP)
Categoría del conjunto de alto valor (HVD)
Categoría temática ISO 19115
URI de palabras clave
Información bibliográfica
Nombre del autor Ascensão, F., Yogui, D., Alves, M., Medici, E.P. y Desbiez, A.
Nombre del editor Elsevier
Identificador alternativo DOI: 10.1016/j.jenvman.2019.109320
Identificador del autor
Email del autor
Web del autor
Procedencia
Declaración de linaje
Perfil de Metadatos
Notas sobre la versión
Versión